Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1143620130170020015
Korean Journal of Nuclear Medicine Technology
2013 Volume.17 No. 2 p.15 ~ p.24
The Study of Influence on Reducing Exposure Dose According to the Applied Flat-panel CT in Extremity Bone SPECT/CT
Kim Ji-Hyeon

Park Hoon-Hee
Lee Ju-Young
Nam Koong Sik
Son Hyeon-Soo
Park Sang-Ryoon
Abstract
Purpose: With the demand of SPECT/CT increasing, the interest in complex diagnostic information of CT is rising along with the expansion of various studies on potential performance value. But the study on reduction of exposure dose generated by CT is not being conducted enough. Therefore, in this study, the goal is to identify how much dose reduction exists when performing the extremity bone SPECT/CT using the flat-panel CT.

Materials and Methods: The extremity bone SPECT/CT was performed with two equipments -BrightView XCT (Philips Healthcare, Cleveland, USA) and Brilliance 16 CT (Philips Healthcare, Cleveland, USA)-to identify the exposed dose and image quality resulted by changing scan parameter (mAs) applying for both equipment respectively. The noise value of image and spatial resolution were measured with AAPM CT phantom. Tube voltage (kVp) was fixed to 120 kVp, tube current (mAs) calculated at different mA (20, 30, 40, 50, 60, 70, 80) was applied to both equipments respectively. DLP (dose length product) were calculated at the same distance at respective mAs. Also, we acquired images and % contrast with NEMA IEC body phantom to confirm the effect on image. The output of statistics was analyzed by SPSS ver.18.

Results: Regarding AAPM phantom, the noise decreased as the tube current (mAs) increased and flat-panel had less noise than Helical CT. This difference increased at lower dose exposure. As to the evaluation of spatial resolution, we can differentiate the space up to 0.75 mm with both equipments. With scan parameter (mA) growing, the value of DLP increased up to 54-216 mGy cm at flat-panel CT and up to 177-709 mGy cm at Helical CT. Regarding NEMA IEC body phantom, same sphere with varied parameter (mA) shows that similar results.

Conclusion: There is no significant differences of image quality in both flat-panel and Helical CT when the scan parameter (mA) is changed respectively. Moreover, we can identify the reduction of exposure dose and confirm %contrast analysis value with maintaining image quality. Therefore, at the extremity bone SPECT/CT requiring high spital resolution without the wide ROI, the flat-panel CT is considered to be more useful and it expected to result in the similar image quality with lower exposure dose compared to Helical CT. Additionally, through this study, we expect to help the reduction of the unnecessary exposure dose.
KEYWORD
SPECT/CT, Flat-panel CT, Dose reduction
FullTexts / Linksout information
Listed journal information